SYNTHESIS OF NEW CHIRAL 1,2-DISUBSTITUTED FERROCENES

Ivana Fleischer ${ }^{1}$ and Štefan Toma ${ }^{2, *}$
Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovakia; e-mail: ${ }^{1}$ ivana.fleischer@web.de, ${ }^{2}$ toma@fns.uniba.sk

Received March 3, 2003
Accepted October 8, 2003

Synthesis of six chiral 1,2-disubstituted ferrocene derivatives is described starting from (S)- $\{2$-(methoxymethyl)pyrrolidin-1-yl]methyl \}ferrocene (2) and $\{N-((1 R, 2 S)$-methoxy-1-methyl-2-phenethyl)-N-methylamino]methyl ferrocene (3). Oxidation of the (N -substituted aminomethyl)ferrocenes with active MnO_{2} furnished the corresponding 2-substituted ferrocenecarbaldehydes.
Keywords: Ferrocenes; Planar chirality; Diastereoselective reactions; Ferrocenecarbaldehydes; Pyrrolidines; Oxidations.

The most frequently used method for the synthesis of 1,2-disubstituted ferrocene derivatives is based on ortho-lithiation of a ferrocene ring, bearing an appropriate ortho-directing group. As (dimethylamino)methyl is a common ortho-directing group, (dimethylamino)methylferrocene served as the starting material for the synthesis of achiral 2-[(dimethylamino)methyl]ferrocenecarbaldehyde ${ }^{1}$. This method was improved by Brocard et al. ${ }^{2}$ and also used in the synthesis of achiral 2-[1-(dimethylamino)ethyl]ferrocenecarbaldehyde ${ }^{3}$. Stereoselective syntheses of 1,2-disubstituted ferrocene derivatives are based on the pioneering work of Ugi et al. ${ }^{4}$ Enantiomerically pure (R)-1-[1-(dimethylamino)ethyl]ferrocene was employed as the starting material and several ($\mathrm{R}, \mathrm{S}_{\mathrm{p}}$)-1-[1-(dimethylamino)ethyl]-2-substituted ferrocene derivatives were prepared, including ($\mathrm{R}, \mathrm{S}_{\mathrm{p}}$)-2-[1-(dimethylamino)ethyl]ferrocenecarbaldehyde. Another frequently used starting material for the stereoselective synthesis of planar chiral 1,2-disubstituded ferrocene derivatives is (R)-ferrocenyl-p-tolyl sulfoxide ${ }^{5-7}$. Its ortho-metallation with n-BuLi and subsequent quenching with electrophiles furnished several chiral ferrocene derivatives with $95-98 \%$ ee.

Other methods for the synthesis of chiral 1,2-disubstituted ferrocene derivatives are based on chiral ferrocenyloxazolines ${ }^{8-10}$, $\{N-((1 R, 2 S)-$ methoxy-1-methyl-2-phenethyl)-N-methylamino]methyl ferrocene ${ }^{11,12 \text {, }}$ and (S)-\{2-(methoxymethyl)pyrrolidin-1-yl]methyl\}ferrocene ${ }^{13-15}$. Several
functional groups were introduced in this way into position 2 of ferrocene, with the exception of the formyl group. A very promising method for the synthesis of chiral 2-substituted ferrocenecarbaldehydes was devised by Kagan et al. ${ }^{16,17}$. The method is based on the synthesis of ferrocenecarbaldehyde acetals with (R)- or (S)-butane-1,2,4-triol, followed by ortho-metalIation and quenching with suitable electrophiles. The following groups were introduced into position 2: $\mathrm{Me}_{3} \mathrm{Si}, \mathrm{Bu}_{3} \mathrm{Sn}, \mathrm{PPh}_{2}, \mathrm{I}, \mathrm{Br}, \mathrm{COOMe}$, tosyl, $\mathrm{B}(\mathrm{OH})_{2}, \mathrm{OH}$ and Me. 2-Acylferrocenecarbaldehydes can be prepared either by Ender's SAM P/RAM P methodology or the Brocard's oxidative approach ${ }^{3}$. In the former, acylferrocenes are converted into their hydrazones by the reaction with (S)- or (R)-1-amino-2-methoxymethylpyrrolidine ${ }^{18,19}$. The hydrazones are ortho-metalated with n-BuLi followed by quenching with DM F, and deprotection of the acyl group is the final operation. The latter possibility is the Brocard's oxidative approach³, where the chiral 1-[1-(dimethylamino)ethyl]ferrocenes are ortho-metalated with n-BuLi, the anions subsequently quenched with DMF and the resultant chiral 1-(dimethylamino)-ethyl-2-formylferrocenes oxidised by active MnO_{2}.
The main aim of this work was to explore the applicability of this methodology of the synthesis of chiral 1,2-disubstituted ferrocenes based on \{N-((1R,2S)-methoxy-1-methyl-2-phenethyl)-N-methylamino]methyl \}ferrocene (3) ${ }^{11,12}$, and (S)-\{2-(methoxymethyl)pyrrolidin-1-yl]methyl \}ferrocene (2) ${ }^{13,14}$ to the synthesis of new chiral derivatives. Another aim was to examine the possibility of oxidative transformation of the alkylamino moiety into the formyl group, which would lead to new chiral 2-substituted ferrocenecarbaldehydes.

RESULTS AND DISCUSSION

The starting amines $\mathbf{2}$ and $\mathbf{3}$ were smoothly prepared without any problems according to the published procedure ${ }^{11-13}$. According to literature reports ${ }^{11-13}$, sec- or tert-butyllithium should have been used for their metallation, but we checked both n-butyllithium and sec-butyllithium as the metallation agents (Scheme 1, Table I).

The results given in Table l show that n-butyllithium (method A) is better than sec-butyllithium (method B) for the metallation of 2, because it allowed us to work at $-30^{\circ} \mathrm{C}$ and gave good yields (56-92\%) of the products with high de (95-97\%). On the other hand, in the metallation of 3, it is necessary to work with sec-butyllitthium at $-70{ }^{\circ} \mathrm{C}$ (method B): the use of n-butylllithium (method A) resulted in low de of the products (11\%) even though the yield was good (72\%).

Scheme 1

Table I
Ortho-substitutions of ferrocenylamines 2 and $\mathbf{3}$

Entry	Substrate	R	Method ${ }^{\text {a }}$	Yield, \% ${ }^{\text {b }}$	de, \% ${ }^{\text {c }}$	Product ${ }^{\text {d }}$
1	(S)-2	Me	B	37.3	99	$\left(S, R_{p}\right)-\mathbf{4 a}$
2	(S)-2	Me	A	64.1	97	$\left(S, R_{p}\right)-\mathbf{4 a}$
3	(S)-2	$\mathrm{Me}_{3} \mathrm{Si}$	A	$67.3{ }^{\text {e }}$	97	$\left(S, S_{p}\right)$-4b
4	(S)-2	CHO	A	83.0	94	$\left(S, S_{p}\right)$-4c
5	(S)-2	SCy ${ }^{\text {e }}$	A	55.9	96	(S, S_{p})-4d
6	(S)-2	COOEt	A	73.9	91	$\left(S, S_{p}\right)-4 e$
7	(S)-2	COOEt	B	68.3	72	$\left(S, S_{p}\right)-\mathbf{4 e}$
8	(1R,2S)-3	CHO	A	72.0	11	($\left.1 R, 2 S, R_{p}\right)-5 a$
9	(1R,2S)-3	CHO	B	69.8	96	($\left.1 R, 2 S, S_{p}\right)-5 a$
10	$(1 R, 2 S)-3$	Me	B	91.6	97	$\left(1 R, 2 S, R_{p}\right)-5 \mathbf{b}$
11	$(1 R, 2 S)-3$	SH	B	0^{9}	-	-

${ }^{a}$ n-BuLi was used as metallation agent in method A and sec-BuLi in method B. ${ }^{b}$ Isolated yield of diastereomeric mixture. ${ }^{\mathrm{C}}$ By ${ }^{1} \mathrm{H}$ NMR, see Experimental. ${ }^{d}$ Configuration according to the literature. ${ }^{\mathrm{e}}$ Literature ${ }^{13}$ gives 88% yield, 93% de. ${ }^{f} \mathrm{Cy}=$ cyclohexyl. ${ }^{9}$ Conversion was 42%, it was not possible to analyze the product mixture.

Metallation with sec-butyllithium resulted in 96-97\% de of the products. Through the metallation of $\mathbf{2}$ and subsequent quenching with methyl iodide, trimethylsilyl chloride, DMF, dicyclohexyl disulfide and ethyl chloroformate, we prepared derivatives with Me, TMS, CHO, SCy (Cy = cyclohex$\mathrm{yl})$ and COOEt group as the substituents. The attempt to prepare the thiol derivative failed, as the product was extremely air-sensitive, and a complex mixture of products was formed.

Chiral 2-substituted ferrocenecarbaldehydes are useful intermediates for the production of chiral amino alcohols, which can be used as catalysts in $\mathrm{R}_{2} \mathrm{Zn}$ addition to the carbonyl group of aldehydes. As there is just a few papers, describing the preparation of chiral 2-substituted ferrocenecarbaldehydes ${ }^{6,7,17,18}$, we decided to examine the possibility of the transformation of 2 -substituted amine derivatives $\mathbf{4 a - 4 e}, \mathbf{5 a}, \mathbf{5 b}$ into the corresponding 2-substituted ferrocenecarbaldehydes 7a-7c via oxidation.

The oxidation was performed with freshly prepared ${ }^{20}$ active MnO_{2} (Scheme 2), and the procedure was tested on simple amines $\mathbf{2}$ and 3. The oxidation proceeded smoothly and, after 24 h , ferrocenecarbaldehyde was isolated in 78% yield. No attempts were made to recover the chiral auxilliaries. The results of the oxidations yielding chiral 2 -substituted ferrocenecarbaldehydes (Table II) proved that this is a feasible route towards their preparation.

6, $E=H$
7a, $\mathrm{E}=\mathrm{Me}$
7b, $\mathrm{E}=\mathrm{Me}_{3} \mathrm{Si}$
7c, $\mathrm{E}=\mathrm{SCy}(\mathrm{Cy}=$ cyclohexyl $)$

2, $E=H$
4a, $E=M e$
4b, $\mathrm{E}=\mathrm{Me}_{3} \mathrm{Si}$
4d, E = SCy (Cy = cyclohexyl)

Scheme 2

3, $E=H$
5b, $\mathrm{E}=\mathrm{Me}$

Table II
Oxidations of ferrocenylamines 2-5

Oxidations of ferrocenylamines 2-5				
Entry	Substrate	Reaction time, h	Yields, \%	Product
	$(\mathrm{~S})-\mathbf{2}$	18	77.9	$\mathbf{6}$
2	$(1 \mathrm{R}, 2 \mathrm{~S})-\mathbf{3}$	24	91.4	$\mathbf{6}$
3	$\left(\mathrm{~S}, \mathrm{R}_{\mathrm{p}}\right)-\mathbf{4 a}$	40	59.2	$\left(\mathrm{R}_{\mathrm{p}}\right)-\mathbf{7 a}$
4	$\left(\mathrm{~S}, \mathrm{~S}_{\mathrm{p}}\right)-\mathbf{4 b}$	40	54.0	$\left(\mathrm{~S}_{\mathrm{p}}\right)-\mathbf{7 b}$
5	$\left(\mathrm{~S}, \mathrm{~S}_{\mathrm{p}}\right)-\mathbf{4 d}$	20	49.0	$\left(\mathrm{~S}_{\mathrm{p}}\right)-\mathbf{7 c}$
6	$\left(1 \mathrm{R}, 2 \mathrm{C}, \mathrm{R}_{\mathrm{p}}\right) \mathbf{- 5 b}$	20	83.7	$\left(\mathrm{R}_{\mathrm{p}}\right)-\mathbf{7 a}$

In conclusion, we have demonstrated that n-BuLi can be used as the metallation agent for the metallation of ferrocenylamines, and 2-substituted ferrocenylamine derivatives can be oxidised without loss of de into the corresponding chiral 2-substituted ferrocenecarbaldehydes by the Brocard's method ${ }^{3}$. This can be used as an alternative to Kagan's method ${ }^{16,17}$.

EXPERIMENTAL

General Methods

Melting points were determined on a Kofler melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}(200 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75 \mathrm{MHz}) \mathrm{NMR}$ spectra were recorded at room temperature in CDCl_{3} on a Varian Gemini 2000 spectrometer. Chemical shifts (δ-scale) are reported in ppm relative to tetramethylsilane as the internal standard, coupling constants (J) are given in Hz. IR spectra (wavenumbers in cm^{-1}) were recorded in CHCl_{3} as a solvent on a Perkin Elmer 781 spectrometer. UV-VIS spectra were recorded in methanol on a Hewlett Packard 8452A spectrometer (λ, nm). Optical rotations were measured on a Perkin Elmer 241 polarimeter at $20^{\circ} \mathrm{C}$ in ethanol; $[\alpha]_{D}$ values given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. The diastereomeric excess of amines was determined using ${ }^{1} \mathrm{H}$ NMR on the basis of the integral ratio of the following chemical shifts: $\mathbf{4 a}$ and $\mathbf{5 b} \delta$ of the CH_{3} group, $\mathbf{4 b} \delta$ of the SiMe_{3} group, $\mathbf{4 c}$ and $\mathbf{5 a} \delta$ of the CHO group, $\mathbf{4 d} \delta$ of the CH_{3} from the ethyl group and $\mathbf{4 d} \delta$ of the OCH_{3} group. All reactions requiring inert conditions were carried out under nitrogen. Diethyl ether was dried and distilled from sodium/benzophenone ketyl under nitrogen, acetonitrile was distilled from calcium hydride and toluene was distilled over sodium under nitrogen before use. Ferrocenyl-methyl-N,N,N-trimethylammonium iodide was prepared by Kindsay's method ${ }^{21}$. Active MnO_{2} was prepared prior to use according to the literature procedure ${ }^{20}$. (1R,2S)-1-M ethoxyN -methyl-1-phenylpropan-2-amine was prepared according to ref. ${ }^{22}$ Chromatographic separations were performed either on silica gel (Merck 60) or alumina (Lachema, activity II-III). The chemicals were purchased from Aldrich or Merck.

Preparation of Derivatives $\mathbf{2}$ and 3. General Procedure ${ }^{12,13}$
A mixture of (ferrocenylmethyltrimethyl)ammonium iodide ($6.00 \mathrm{~g}, 15.6 \mathrm{mmol}$), an amine (16.2 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.34 \mathrm{~g}, 31.4 \mathrm{mmol})$ in acetonitrile (200 ml) was heated at reflux under nitrogen for 2 or 4 days. After filtration, the solvent was removed and the residue stirred with a mixture of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$, water (100 ml) and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(20 \mathrm{ml})$ for 5 min . The water layer was washed with diethyl ether, alkalized with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The product was purified by chromatography on a short alumina column (hexane).
(S)-\{2-(M ethoxymethyl) pyrrolidin-1-yl]methyl \}ferrocene (2). (S)-2 was obtained as an orange oil after 2 days ($4.0 \mathrm{~g} ; 82 \%$), which is in accord with ref. ${ }^{13}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.54-1.73 \mathrm{~m}$, $3 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.81 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.25 \mathrm{ddd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=9.2,7.1\left(\mathrm{NCH}_{2}\right) ;$ $2.62 \mathrm{~m}, 1 \mathrm{H}(\mathrm{NCH}) ; 2.93 \mathrm{ddd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=7.0,1.8\left(\mathrm{NCH}_{2}\right) ; 3.23 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=$ $6.4\left(\mathrm{OCH}_{2}\right) ; 3.34 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.35 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=4.9\left(\mathrm{OCH}_{2}\right) ; 3.41 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=13.1$
$\left(\mathrm{FcCH}_{2}\right) ; 3.75 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=13.1\left(\mathrm{FcCH}_{2}\right) ; 4.09 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.11 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.16 \mathrm{~m}, 1 \mathrm{H}$ $\left(\mathrm{H}_{\alpha 1}\right) ; 4.18 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right) .[\alpha]_{D}-58.7$ (589), -61.3 (578), -69.5 (546) (c 0.62, EtOH).
\{N-((1R,2S)-M ethoxy-1-methyl-2-phenethyl)-N-methylamino]methyl \}ferrocene (3). (1R,2S)-3 was obtained as a yellow solid after 4 days ($4.8 \mathrm{~g} ; 81 \%$). M.p. $44-46{ }^{\circ} \mathrm{C}$, in accord with ref. ${ }^{11}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.00 \mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.8\left(\mathrm{CHCH}_{3}\right) ; 2.25 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 2.82 \mathrm{dq}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.1$, $6.8(\mathrm{NCH}) ; 3.25 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.41 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.9\left(\mathrm{CH}_{2}\right) ; 3.50 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.9\left(\mathrm{CH}_{2}\right) ;$ $4.07 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.08 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.29 \mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.1$ (CHPh); 7.20-7.24 m, $3 \mathrm{H}(\mathrm{Ph}) ;$ $7.27-7.34 \mathrm{~m}, 2 \mathrm{H}(\mathrm{Ph}) .[\alpha]_{\mathrm{D}}-13.5$ (589), -13.7 (578), -14.4 (546) (c 0.54, EtOH).

Preparation of Compounds $\mathbf{4 a - 4 e}$ and $\mathbf{5 a}, \mathbf{5 b}$

Method A. To a solution of amine 2 or $3(200 \mathrm{mg}, 0.64 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ was added dropwise 1.6 m solution of n -BuLi ($0.45 \mathrm{ml}, 0.71 \mathrm{mmol}, 1.1$ equiv.) under nitrogen at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 2.5 h and then at $20^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to $-55^{\circ} \mathrm{C}$ and an electrophile ($0.71 \mathrm{mmol}, 1.1$ equiv.) was added dropwise. The mixture was allowed to warm to room temperature over 12 h . After the reaction was quenched with aqueous NaHCO_{3}, the organic layer was separated and the water layer extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude product was purified by chromatography.

Method B. The same as method A; 1.3 m solution of sec-BuLi was used instead of n-BuLi, the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and then at $-30^{\circ} \mathrm{C}$ for 2 h . Electrophiles were added at $-78{ }^{\circ} \mathrm{C}$.
$\left(S, R_{p}\right)-1-\{2-(M$ ethoxymethyl)pyrrolidin-1-yl $] m e t h y l\}-2$-methylferrocene (4a). (S, R_{p})-4a was obtained as an orange oil after chromatography on silica with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (3:1). Method A with Mel as the electrophile gave the product in 64% yield ($>99 \%$ de); method B in 37% yield (97% de). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 1.50-1.72 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.83 \mathrm{~m}, 1 \mathrm{H}$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.00 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{FCCH}_{3}\right) ; 2.18 \mathrm{ddd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=9.3,7.3\left(\mathrm{NCH}_{2}\right) ; 2.67 \mathrm{~m}, 1 \mathrm{H}$ $(\mathrm{NCH}) ; 2.95 \mathrm{ddd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=7.8,2.0\left(\mathrm{NCH}_{2}\right) ; 3.26 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=6.4\left(\mathrm{OCH}_{2}\right)$; $3.37 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.31 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.9\left(\mathrm{FcCH}_{2}\right) ; 3.40 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.4,{ }^{3} \mathrm{~J}=4.5\left(\mathrm{OCH}_{2}\right)$; $3.93 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.9\left(\mathrm{FCCH}_{2}\right) ; 3.96 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 4.01 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.04 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ;$ $4.08 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $13.6\left(\mathrm{FCCH}_{3}\right), 22.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $52.5\left(\mathrm{FcCH}_{2}\right), 54.5\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{OCH}_{3}\right), 62.2(\mathrm{NCH}), 65.7\left(\mathrm{CH}_{\alpha 1}\right), 69.2\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.78$ $\left(\mathrm{CH}_{\alpha 2}\right), 69.83\left(\mathrm{CH}_{\beta}\right), 76.9\left(\mathrm{C}_{\mathrm{i}}\right), 77.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 84.1\left(\mathrm{C}_{\mathrm{i}}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 2810(\mathrm{w}), 2430(\mathrm{w}), 1470$ (m), 1230 (s), 1120 (s, C-O-C), 1010 (w), 830 (m). UV VIS, λ ($\log \varepsilon$): 206 (3.41). For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FeNO}$ (326.5) calculated: $66.07 \% \mathrm{C}, 7.70 \% \mathrm{H}, 4.28 \% \mathrm{~N}$; found: $65.79 \% \mathrm{C}, 7.80 \% \mathrm{H}$, 4.08% N. $[\alpha]_{D}-34.6$ (c 0.615, EtOH).
$\left(S, S_{p}\right)$-1- $\left\{2\right.$-(M ethoxymethyl)pyrrolidin-1-yl]methyl\}-2-(trimethylsilyl)ferrocene (4b). (S, S_{p})-4b was obtained by method A with $\mathrm{Me}_{3} \mathrm{SiCl}$ as the electrophile, chromatography on silica with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (1:1) gave the product as an orange oil in accord with ref. ${ }^{13}$ ($67 \%, 97 \%$ de). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.28 \mathrm{~s}, 9 \mathrm{H}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.46-1.64 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.86 \mathrm{~m}, 1 \mathrm{H}$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.01 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 2.57 \mathrm{~m}, 1 \mathrm{H}(\mathrm{NCH}) ; 2.71 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 3.07 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=$ $12.6\left(\mathrm{FcCH}_{2}\right) ; 3.23 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,{ }^{3} \mathrm{~J}=6.3\left(\mathrm{OCH}_{2}\right) ; 3.36 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.47 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=$ $9.0{ }^{3} \mathrm{~J}=5.1\left(\mathrm{OCH}_{2}\right) ; 4.01 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.0\left(\mathrm{FcCH}_{2}\right) ; 4.03 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 4.08 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$; $4.21 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.27 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 2800(\mathrm{w}), 2420(\mathrm{w}), 1260(\mathrm{~s}), 1120(\mathrm{~m}$, $\mathrm{C}-\mathrm{O}-\mathrm{C}), 850(\mathrm{~s})$. UV VIS, $\lambda(\log \varepsilon)$: 208 (3.59). For $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{FeNOSi}$ (388.6) calculated:
$62.32 \% \mathrm{C}, ~ 8.11 \% \mathrm{H}, 3.63 \% \mathrm{~N}$; found: $62.40 \% \mathrm{C}, 8.29 \% \mathrm{H}, 3.46 \% \mathrm{~N} .[\alpha]_{\mathrm{D}}-41.0$ (c 0.485 , EtOH).
$\left(S, S_{p}\right)-2-\left\{2-\left(M\right.\right.$ ethoxymethyl)pyrrolidin-1-yl]methyl \}ferrocene-1-carbaldehyde (4c). (S, S_{p})-4c was obtained by method A with DMF as the electrophile, chromatography on alumina with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (2:1) gave the product as a red oil ($83 \%, 94 \%$ de). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 1.51-1.72 m, $3 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.85 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.19 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 2.70 \mathrm{~m}$, $1 \mathrm{H}(\mathrm{NCH}) ; 2.96 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 3.30 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,{ }^{3} \mathrm{~J}=5.4\left(\mathrm{OCH}_{2}\right) ; 3.38 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=$ $12,2\left(\mathrm{FcCH}_{2}\right) ; 3.39 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.46 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,{ }^{3} \mathrm{~J}=5.7\left(\mathrm{OCH}_{2}\right) ; 4.22 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$; $4.37\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.2\left(\mathrm{FcCH}_{2}\right) ; 4.53 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 4.58 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.79 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right)\right.$; $10.14 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 23.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.68\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.2$ $\left(\mathrm{FcCH}_{2}\right), 54.6\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{OCH}_{3}\right), 62.4(\mathrm{NCH}), 69.9\left(\mathrm{CH}_{\alpha 1}\right), 70.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.8\left(\mathrm{CH}_{\alpha 2}\right), 75.8$ $\left(\mathrm{CH}_{3}\right), 77.0\left(\mathrm{C}_{\mathrm{i}}\right), 77.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 77.9\left(\mathrm{C}_{\mathrm{i}}\right), 193.9(\mathrm{CHO}) . I R\left(\mathrm{CHCl}_{3}\right): 2420(\mathrm{w}), 1680(\mathrm{~s}, \mathrm{C}=0)$, 1230 (s), 760 (m). UV VIS, λ ($\log \varepsilon$): 202 (3.43). For $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{FeNO}_{2}$ (340.4) calculated: 63.36% C, $6.79 \% \mathrm{H}, 4.10 \% \mathrm{~N}$; found: 63.28\% C, $6.85 \% \mathrm{H}, 4.01 \% \mathrm{~N} .[\alpha]_{\mathrm{D}}-229.7$ (589), -262.1 (578), -267.2 (546) (c 0.195, EtOH).
$\left(\mathrm{S}, \mathrm{S}_{\mathrm{p}}\right)$-1-(Cyclohexylsulfanyl)-2-\{2-(methoxymethyl)pyrrolidin-1-yl]methyl \}errocene (4d). (S, S_{p})4d was obtained by method A with biscyclohexyl disulfide, chromatography on alumina with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (1:1) gave the product as yellow crystals (56%, 96% de). M.p. $40-45^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 1.07-1.30 m, 4 H (Cyclohexyl); 1.55-1.80 m, 8 H (Cyclohexyl + $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.91 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.11 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 2.65 \mathrm{~m}, 1 \mathrm{H}(\mathrm{NCH}) ; 2.86 \mathrm{~m}$, $1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 2.93 \mathrm{~m}, 1 \mathrm{H}(\mathrm{SCH}) ; 3.11 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.3\left(\mathrm{FCCH}_{2}\right) ; 3.18 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,{ }^{3} \mathrm{~J}=$ $7.8\left(\mathrm{OCH}_{2}\right) ; 3.39 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.59 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,{ }^{3} \mathrm{~J}=4.2\left(\mathrm{OCH}_{2}\right) ; 4.09 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$; $4.12 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.17 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.3\left(\mathrm{FcCH}_{2}\right) ; 4.27 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\alpha}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 23.1$ ($\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 26.1 (Cyclohexyl), $26.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 29.4 (Cyclohexyl), 33.1 (Cyclohexyl), 34.1 (Cyclohexyl), $47.8(\mathrm{SCH}), 53.1\left(\mathrm{FcCH}_{2}\right), 54.4\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{OCH}_{3}\right), 63.3(\mathrm{NCH}), 67.5$ $\left(\mathrm{CH}_{\alpha 1}\right), 70.1\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.4\left(\mathrm{CH}_{\alpha 2}\right), 75.7\left(\mathrm{CH}_{\beta}\right), 77.0\left(\mathrm{C}_{\mathrm{i}}\right), 77.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 78.7\left(\mathrm{C}_{\mathrm{i}}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$: 2800 (m, O-CH3), 2430 (w), 1460 (s), 1230 (s), 1120 (s), 1010 (m), 830 (m). UV VIS, λ ($\log \varepsilon$): 208 (3.64). For $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{FeNOS}(426.6)$ calculated: $64.63 \% \mathrm{C}, 7.78 \% \mathrm{H}, 3.28 \% \mathrm{~N}$; found: 64.70% C, $7.84 \% \mathrm{H}, 3.04 \% \mathrm{~N} .[\alpha]_{\mathrm{D}}+3.37$ (c 0.51, EtOH).

Ethyl $\left.\left(S, S_{p}\right)-2-\{2-(m e t h o x y m e t h y l) p y r r o l i d i n-1-y l\} m e t h y l\right] f e r r o c e n e-1-c a r b o x y l a t e ~(4 e) . ~\left(S, S_{p}\right)-4 e$ was obtained with ethyl chloroformate after chromatography on alumina with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (3:1) as a red oil. Method A gave the product in 74% yield (91% de); method B in 68% yield ($72 \% \mathrm{de}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.37 \mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.57-1.77 \mathrm{~m}, 3 \mathrm{H}$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.86 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.24 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 2.72 \mathrm{~m}, 1 \mathrm{H}(\mathrm{NCH}) ; 3.06 \mathrm{~m}$, $1 \mathrm{H}\left(\mathrm{NCH}_{2}\right) ; 3.26 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,{ }^{3} \mathrm{~J}=7.2\left(\mathrm{OCH}_{2}\right) ; 3.36 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.2\left(\mathrm{FcCH}_{2}\right) ; 3.37 \mathrm{~s}$, $3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.53 \mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.0,^{3} \mathrm{~J}=4.5\left(\mathrm{OCH}_{2}\right) ; 4.14 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.28 \mathrm{q}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.32 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 4.47 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.53 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.2\left(\mathrm{FcCH}_{2}\right) ; 4.79 \mathrm{~m}, 1 \mathrm{H}$ $\left(\mathrm{H}_{\alpha 2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 14.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.1$ $\left(\mathrm{FcCH}_{2}\right), 54.4\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{OCH}_{3}\right), 60.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 62.2(\mathrm{NCH}), 70.0\left(\mathrm{CH}_{\alpha 1}\right), 70.5\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, $71.4\left(\mathrm{CH}_{\beta}\right), 74.7\left(\mathrm{CH}_{\alpha 2}\right), 76.2\left(\mathrm{C}_{\mathrm{i}}\right), 77.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 77.7\left(\mathrm{C}_{\mathrm{i}}\right), 172.0(\mathrm{COO})$. IR $\left(\mathrm{CHCl}_{3}\right): 2420$ (w), 1720 (m, C=O), 1230 (s), $780(\mathrm{~m})$. UV VIS, $\lambda(\log \varepsilon): 209$ (3.40). For $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{FeNO}$ (352.5) calculated: 62.35\% C, 7.06\% H, 3.64\% N; found: 62.14\% C, 7.04\% H, 3.24\% N. [$\alpha]_{D}-92.5$ (589), -99.3 (578), -123.5 (546) (c 0.575, EtOH).
(1R,2S, S_{p}) - $\{\mathrm{N}$-[(2-M ethoxy-1-methyl-2-phenethyl)- N -methylamino]methyl $\}$ ferrocene-1-carbaldehyde (5a). (1R, $2 S, S_{p}$)-5a was obtained with DMF as the electrophile after chromatography on alumina with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (3:1) as a red oil. Method A gave the product in 72% yield (11% de); method B in 70% yield (96% de). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.06 \mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.7\left(\mathrm{CHCH}_{3}\right)$;
$2.18 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 2.82 \mathrm{dq}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.6,6.7(\mathrm{NCH}) ; 3.23 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.48 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=$ $12.9\left(\mathrm{CH}_{2}\right) ; 3.84 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.9\left(\mathrm{CH}_{2}\right) ; 4.18 \mathrm{~s}+\mathrm{d}, 6 \mathrm{H}\left(\mathrm{CHPh}+\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.42 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right)$; $4.47 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.73 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right) ; 7.16-7.35 \mathrm{~m}, 5 \mathrm{H}(\mathrm{Ph}) ; 9.83 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 8.9\left(\mathrm{CHCH}_{3}\right), 36.9\left(\mathrm{NCH}_{3}\right), 52.5\left(\mathrm{CH}_{2}\right), 56.9\left(\mathrm{OCH}_{3}\right), 63.8(\mathrm{NCH}), 69.1\left(\mathrm{CH}_{\alpha 1}\right), 70.3$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.6\left(\mathrm{CH}_{\beta}\right), 75.7\left(\mathrm{CH}_{\alpha 2}\right), 77.2\left(\mathrm{C}_{\mathrm{i}}\right), 77.8\left(\mathrm{C}_{\mathrm{i}}\right), 86.0(\mathrm{CHPh}), 127.2+127.4+128.3$ (Ph), $141.5\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 193.7(\mathrm{CHO})$. IR $\left(\mathrm{CHCl}_{3}\right): 2420(\mathrm{~m}), 1690(\mathrm{~s}, \mathrm{C}=0), 1230(\mathrm{~s}), 820(\mathrm{~s})$. UV VIS, $\lambda(\log \varepsilon): 204$ (3.51). For $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FeNO}_{2}$ (404.5) calculated: 68.16\% C, $6.71 \% \mathrm{H}, 3.46 \% \mathrm{~N}$; found: $68.05 \% \mathrm{C}, 6.81 \% \mathrm{H}, 3.07 \% \mathrm{~N} .[\alpha]_{D}-233$ (589), -261 (578), -353 (546) (c 0.165, $\mathrm{EtOH})$.
(1R,2S, R_{p})- \{N-[(2-M ethoxy-1-methyl-2-phenethyl)-N-methylamino]methyl\}-1-methylferrocene (5b). (1R, $2 S, R_{p}$)-5b was obtained with Mel as electrophile as an orange oil by method B, chromatography on alumina with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (1:1) $\left(92 \%, 97 \%\right.$ de). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $1.05 \mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.6\left(\mathrm{CHCH}_{3}\right) ; 1.77 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{FcCH}_{3}\right) ; 2.15 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 2.82 \mathrm{dq}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=$ $6.0,6.6(\mathrm{NCH}) ; 3.23 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.34 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.6\left(\mathrm{CH}_{2}\right) ; 3.49 \mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=12.6\left(\mathrm{CH}_{2}\right)$; $3.90 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 3.94 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 3.97 \mathrm{~s}+\mathrm{d}, 6 \mathrm{H}\left(\mathrm{CHPh}+\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.19 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right)$; $7.20-7.25 \mathrm{~m}, 3 \mathrm{H}(\mathrm{Ph}) ; 7.28-7.33 \mathrm{~m}, 2 \mathrm{H}(\mathrm{Ph}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.7\left(\mathrm{CHCH}_{3}\right), 13.4\left(\mathrm{CH}_{3} \mathrm{Fc}\right)$, $37.1\left(\mathrm{NCH}_{3}\right), 52.8\left(\mathrm{CH}_{2}\right), 56.9\left(\mathrm{OCH}_{3}\right), 63.4(\mathrm{NCH}), 68.7\left(\mathrm{CH}_{\alpha 1}\right), 69.2\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.6\left(\mathrm{CH}_{\beta}\right)$, $70.0\left(\mathrm{CH}_{\alpha 2}\right), 77.2\left(\mathrm{C}_{\mathrm{i}}\right), 77.8\left(\mathrm{C}_{\mathrm{i}}\right), 84.3(\mathrm{CHPh}), 127.2+127.3+128.2(\mathrm{Ph}), 141.7\left(\mathrm{C}_{\mathrm{i}}\right) . \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right): 2420$ (w), 1470 (w), 1230 (s), 1100 (m, C-O-C), 780 (s). UV VIS, λ (log ε): 206 (3.67). For $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{FeNO}$ (390.5) calculated: $70.59 \% \mathrm{C}, 7.47 \% \mathrm{H}, 3.58 \% \mathrm{~N}$; found: $70.80 \% \mathrm{C}$, $7.91 \% \mathrm{H}, 3.20 \% \mathrm{~N} .[\alpha]_{\mathrm{D}}-25.1$ (589), -27.1 (578), -36.7 (546) (c 0.54, EtOH).

Oxidation of Amines. General Method ${ }^{3}$

To a solution of ferrocenylmethylamine (32 mmol) in anhydrous toluene (5 ml) was added active MnO_{2} ($3.2 \mathrm{mmol}, 10$ equiv.). The mixture was heated at reflux under nitrogen for $18-40 \mathrm{~h}$ and the progress of the reaction was monitored by TLC. After the reaction mixture was cooled down to room temperature, the unreacted MnO_{2} was filtered off, the solvent removed by evaporation and the residue purified by chromatography on alumina using isohexane/diethyl ether (4:1-2:1) as the eluent.

Ferrocenecarbaldehyde (6). Compound 6 was obtained in 18 h from (S)-2 as red crystals (78%) and in 24 h from ($1 \mathrm{R}, 2 \mathrm{~S}$)-3 (91%). M.p. $121-123^{\circ} \mathrm{C}$; ref. ${ }^{25}$ gives $124.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 4.28 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.61 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.80 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{\alpha}\right) ; 9.96 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO})$.
$\left(R_{p}\right)$-2-M ethylferrocene-1-carbaldehyde 7a. (R_{p})-7a was obtained in 40 h from $\mathbf{4 a}$ as red crystals (59\%) after chromatography on silica with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (3:1) and in 20 h from 5b (84\%). M.p. $40-42^{\circ} \mathrm{C}$, in accord with ref. ${ }^{17}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.26 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 4.20 \mathrm{~s}, 5 \mathrm{H}$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.46 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right) ; 4.50 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.70 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 10.10 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 29.7\left(\mathrm{CH}_{3}\right), 69.5\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 70.2\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.0\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 75.0\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 77.0\left(\mathrm{C}_{\mathrm{i}}\right)$, $87.1\left(\mathrm{C}_{\mathrm{i}}\right), 193.9(\mathrm{CHO})$. IR $\left(\mathrm{CHCl}_{3}\right): 2420(\mathrm{w}), 1680(\mathrm{~s}, \mathrm{C}=0), 1440(\mathrm{~m}), 1220(\mathrm{~m}), 1040(\mathrm{w})$, $840(\mathrm{~m}), 750(\mathrm{~s})$. UV VIS, λ ($\log \varepsilon$): 202 (3.24). For $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FeO}$ (227.3) calculated: $63.20 \% \mathrm{C}$, $5.30 \% \mathrm{H}$; found: $63.17 \% \mathrm{C}, 5.42 \% \mathrm{H} .[\alpha]_{\mathrm{D}} 146$ (589), 169 (578), 160 (546) (c 0.10, EtOH); ref. ${ }^{20}$ gives $[\alpha]_{D}+147.8 \pm 8$ (c 0.76, EtOH).
$\left(\mathrm{S}_{\mathrm{p}}\right)$-2-(Trimetylsilyl)ferrocene-1-carbaldehyde 7b. $\left(\mathrm{S}_{\mathrm{p}}\right)$ - $\mathbf{7 b}$ was obtained in 40 h from $\left(\mathrm{S}, \mathrm{S}_{\mathrm{p}}\right)$-4b. Chromatography on silica with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (6:1) gave the product as red crystals (54\%). M.p. $60-65{ }^{\circ} \mathrm{C}$, in accord with ref. ${ }^{17}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.32 \mathrm{~s}, 9 \mathrm{H}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 4.26 \mathrm{~s}, 5 \mathrm{H}$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.53 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 1}\right) ; 4.72 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\beta}\right) ; 4.99 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{\alpha 2}\right) ; 10.03 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.003\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 69.2\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 73.2\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 74.3\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 74.6\left(\mathrm{C}_{\mathrm{i}}\right), 79.3$
$\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 77.0\left(\mathrm{C}_{\mathrm{i}}\right), 193.9(\mathrm{CHO}) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 2420(\mathrm{w}), 1680(\mathrm{~s}, \mathrm{C}=0), 1440(\mathrm{~m}), 1260(\mathrm{~s})$, 1050 (w), 840 (s, C-Si). UV VIS, λ (log ε): 204 (3.38). For $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FeOSi}$ (289.4) calculated: 58.75% C, $6.34 \% \mathrm{H}$; found: $58.45 \% \mathrm{C}, 6.20 \% \mathrm{H} .[\alpha]_{D}-133.3$ (c 0.09, EtOH); ref. ${ }^{21}$ gives $[\alpha]_{D}$ +194 (c 0.28, EtOH); (R R_{p}).
$\left(S_{p}\right)$-2-(Cyclohexylsulfanyl)ferrocene-1-carbaldehyde 7c. $\left(S_{p}\right)$-7c was obtained in 20 h from $\left(\mathrm{S}, \mathrm{S}_{\mathrm{p}}\right)$-4d. Chromatography on silica with isohexane/ $\mathrm{Et}_{2} \mathrm{O}$ (4:1) gave the product as red crystals (49\%). M.p. $40-45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $1.22 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 1.59 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 1.71 \mathrm{~m}$, $2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 1.85 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 2.59 \mathrm{~m}, 1 \mathrm{H}(\mathrm{CH}) ; 4.28 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.66 \mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=2.5$ $\left(\mathrm{H}_{\beta}\right) ; 4.69 \mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=2.5,1.6\left(\mathrm{H}_{\alpha 1}\right) ; 4.96 \mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=2.5,1.6\left(\mathrm{H}_{\alpha 2}\right) ; 10.26 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 25.7,26.1,33.5\left(\mathrm{CH}_{2}\right), 49.2(\mathrm{CH}), 68.9\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 71.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 73.1\left(\mathrm{C}_{5} \mathrm{H}_{3}\right)$, 77.0 (Cyclohexyl), $80.7\left(\mathrm{C}_{5} \mathrm{H}_{3}\right), 82.0$ (Cyclohexyl), 194.8 (CHO). IR (CHCl_{3}): $2660(\mathrm{~m})$, 2400 (w), 1670 (s, C=0), 1420 (m), 1220 (s), 1000 (w), 780 (s). UV VIS, λ ($\log \varepsilon$): 202 (3.50). For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FeOS}$ (327.5) calculated: $62.20 \% \mathrm{C}, 6.14 \% \mathrm{H}$; found: $61.59 \% \mathrm{C}, 5.77 \% \mathrm{H} .[\alpha]_{D}$ 769.7 (589), 887.9 (578), 1193.9 (546) (c 0.165, EtOH).

REFERENCES

1. Delevaux-Nicot B., Guari Y., Mathieu R.: J. Organomet. Chem. 1995, 489, C87.
2. Picart-Goetheluck S., Delacroix O., Maciejewski L., Brocard J.: Synthesis 2000, 1421.
3. Malfait S., Pelinski L., Maciejewski L., Brocard J.: Synlett 1997, 830.
4. Marquarding D., Klusáček H., Gohel G., Hoffmann P., Ugi I.: J. Am. Chem. Soc. 1970, 92, 5389.
5. Rebière F., Riant O., Ricard L., Kagan H. B.: Angew. Chem. 1993, 105, 644.
6. Lagneau N. M., Chen Y., Robben P. M., Sin H. S., Takasu K., Chen J. S., Robinson P. D., Hua D. H.: Tetrahedron 1998, 54, 7301.
7. Riant O., Argouarch G., Guillaneux D., Samuel O., Kagan H. B.: J. Org. Chem. 1998, 63, 3511.
8. Richards C. J., Damalidis T., Hibbs D. E., Hursthouse M. B.: Synlett 1995, 74.
9. Nishibayashi Y., Uemura S.: Synlett 1995, 79.
10. Sammakia T., Latham H. A., Schaad D. R.: J. Org. Chem. 1995, 60, 10.
11. Kitzler R., Xiao L., Weissensteiner W.: Tetrahedron: Asymmetry 2000, 11, 3459.
12. Xiao L., Kitzler R., Weissensteiner W.: J. Org. Chem. 2001, 66, 8912.
13. Ganter C., Wagner T.: Chem. Ber. 1995, 128, 1157.
14. Gotov B., Toma Š., Solčaniová E., Cvengroš J.: Tetrahedron 2000, 56, 671.
15. Šebesta R., Sališová M.: Collect. Czech. Chem. Commun. 2002, 67, 1700.
16. Riant O., Argouarch G., Guillaneux D., Samuel O., Kagan H. B.: J. Org. Chem. 1998, 63, 3511.
17. Riant O., Samuel O., Kagan H. B.: J. Am. Chem. Soc. 1993, 115, 5835.
18. Enders D., Peters R., Lochtman R., Rusink J.: Synlett 1997, 1462.
19. Enders D., Peters R., Lochtman R., Rusink J.: Eur. J. Org. Chem. 2000, 2839.
20. Vogel's Textbook of Practical Organic Chemistry, p. 302. Longman, London 1978.
21. Kindsay J. K., Hauser C. R.: J. Org. Chem. 1957, 22, 355.
22. Näslund J., Welch C. J.: Tetrahedron: Asymmetry 1991, 2, 1123.
23. Schlôgl K., Fried M., Falk H.: Monatsh. Chem. 1964, 95, 576.
24. Riant O., Samuel O., Flessner T., Taudien S., Kagan H. B.: J. Org. Chem. 1997, 62, 6733.
25. Broadhead G. D., Osgerby J. M., Pauson P. L.: J. Chem. Soc. 1958, 650.
