SYNTHESIS OF NEW CHIRAL 1,2-DISUBSTITUTED FERROCENES

Ivana FLEISCHER¹ and Štefan TOMA^{2,*}

Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovakia; e-mail: ¹ ivana.fleischer@web.de, ² toma@fns.uniba.sk

Received March 3, 2003 Accepted October 8, 2003

Synthesis of six chiral 1,2-disubstituted ferrocene derivatives is described starting from (*S*)-{[2-(methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene (**2**) and {[*N*-((1*R*,2*S*)-methoxy-1-methyl-2-phenethyl)-*N*-methylamino]methyl}ferrocene (**3**). Oxidation of the (*N*-substituted aminomethyl)ferrocenes with active MnO_2 furnished the corresponding 2-substituted ferrocenecarbaldehydes.

Keywords: Ferrocenes; Planar chirality; Diastereoselective reactions; Ferrocenecarbaldehydes; Pyrrolidines; Oxidations.

The most frequently used method for the synthesis of 1,2-disubstituted ferrocene derivatives is based on *ortho*-lithiation of a ferrocene ring, bearing an appropriate ortho-directing group. As (dimethylamino)methyl is a common ortho-directing group, (dimethylamino)methylferrocene served as the starting material for the synthesis of achiral 2-[(dimethylamino)methyl]ferrocenecarbaldehyde¹. This method was improved by Brocard et al.² and also used in the synthesis of achiral 2-[1-(dimethylamino)ethyl]ferrocenecarbaldehyde³. Stereoselective syntheses of 1,2-disubstituted ferrocene derivatives are based on the pioneering work of Ugi et al.⁴ Enantiomerically pure (R)-1-[1-(dimethylamino)ethyl]ferrocene was employed as the starting material and several (R, S_n) -1-[1-(dimethylamino)ethyl]-2-substituted ferrocene derivatives were prepared, including (R, S_p) -2-[1-(dimethylamino)ethyl]ferrocenecarbaldehyde. Another frequently used starting material for the stereoselective synthesis of planar chiral 1,2-disubstituded ferrocene derivatives is (*R*)-ferrocenyl-*p*-tolyl sulfoxide⁵⁻⁷. Its ortho-metallation with *n*-BuLi and subsequent quenching with electrophiles furnished several chiral ferrocene derivatives with 95-98% ee.

Other methods for the synthesis of chiral 1,2-disubstituted ferrocene derivatives are based on chiral ferrocenyloxazolines⁸⁻¹⁰, {[N-((1R,2S)-methoxy-1-methyl-2-phenethyl)-N-methylamino]methyl}ferrocene^{11,12}, and (S)-{[2-(methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene¹³⁻¹⁵. Several

functional groups were introduced in this way into position 2 of ferrocene, with the exception of the formyl group. A very promising method for the synthesis of chiral 2-substituted ferrocenecarbaldehydes was devised by Kagan et al.^{16,17}. The method is based on the synthesis of ferrocenecarbaldehyde acetals with (R)- or (S)-butane-1,2,4-triol, followed by ortho-metallation and quenching with suitable electrophiles. The following groups were introduced into position 2: Me₃Si, Bu₃Sn, PPh₂, I, Br, COOMe, tosyl, B(OH)₂, OH and Me. 2-Acylferrocenecarbaldehydes can be prepared either by Ender's SAMP/RAMP methodology or the Brocard's oxidative approach³. In the former, acylferrocenes are converted into their hydrazones by the reaction with (S)- or (R)-1-amino-2-methoxymethylpyrrolidine^{18,19}. The hydrazones are *ortho*-metalated with *n*-BuLi followed by quenching with DMF, and deprotection of the acyl group is the final operation. The latter possibility is the Brocard's oxidative approach³, where the chiral 1-[1-(dimethylamino)ethyl]ferrocenes are ortho-metalated with n-BuLi, the anions subsequently quenched with DMF and the resultant chiral 1-(dimethylamino)ethyl-2-formylferrocenes oxidised by active MnO₂.

The main aim of this work was to explore the applicability of this methodology of the synthesis of chiral 1,2-disubstituted ferrocenes based on $\{[N-((1R,2S)-methoxy-1-methyl-2-phenethyl)-N-methylamino]methyl\}$ ferrorocene (3)^{11,12}, and (S)- $\{[2-(methoxymethyl)pyrrolidin-1-yl]methyl\}$ ferrocene (2)^{13,14} to the synthesis of new chiral derivatives. Another aim was to examine the possibility of oxidative transformation of the alkylamino moiety into the formyl group, which would lead to new chiral 2-substituted ferrocenecarbaldehydes.

RESULTS AND DISCUSSION

The starting amines **2** and **3** were smoothly prepared without any problems according to the published procedure^{11–13}. According to literature reports^{11–13}, *sec*- or *tert*-butyllithium should have been used for their metallation, but we checked both *n*-butyllithium and *sec*-butyllithium as the metallation agents (Scheme 1, Table I).

The results given in Table I show that *n*-butyllithium (method *A*) is better than *sec*-butyllithium (method *B*) for the metallation of **2**, because it allowed us to work at -30 °C and gave good yields (56–92%) of the products with high de (95–97%). On the other hand, in the metallation of **3**, it is necessary to work with *sec*-butyllithium at -70 °C (method *B*): the use of *n*-butylllithium (method *A*) resulted in low de of the products (11%) even though the yield was good (72%).

SCHEME 1

TABLE I					
Ortho-substitutions	of	ferrocenylamines	2	and	3

Entry	Substrate	R	Method ^a	Yield, % ^b	de, % ^c	Product ^d
1	(<i>S</i>)-2	Me	В	37.3	99	(<i>S</i> , <i>R</i> _p)- 4a
2	(<i>S</i>)- 2	Me	Α	64.1	97	$(S, R_{\rm p})$ -4a
3	(<i>S</i>)- 2	Me ₃ Si	A	67.3 ^e	97	(S, S_p) - 4b
4	(<i>S</i>)- 2	СНО	A	83.0	94	(S, S_p) -4c
5	(<i>S</i>)- 2	SCy ^e	A	55.9	96	(S, S_p) -4d
6	(<i>S</i>)- 2	COOEt	A	73.9	91	(S, S_p) -4e
7	(<i>S</i>)- 2	COOEt	В	68.3	72	(S, S_p) - 4e
8	(1 <i>R</i> ,2 <i>S</i>)- 3	СНО	A	72.0	11	$(1R, 2S, R_{\rm p})$ -5a
9	(1 <i>R</i> ,2 <i>S</i>)- 3	СНО	В	69.8	96	(1 <i>R</i> ,2 <i>S</i> , <i>S</i> _p)- 5a
10	(1 <i>R</i> ,2 <i>S</i>)- 3	Me	В	91.6	97	$(1R, 2S, R_{\rm p})$ -5b
11	(1 <i>R</i> ,2 <i>S</i>)- 3	SH	В	0^g	-	-

^{*a*} *n*-BuLi was used as metallation agent in method *A* and *sec*-BuLi in method *B*. ^{*b*} Isolated yield of diastereomeric mixture. ^{*c*} By ¹H NMR, see Experimental. ^{*d*} Configuration according to the literature. ^{*e*} Literature¹³ gives 88% yield, 93% de. ^{*f*} Cy = cyclohexyl. ^{*g*} Conversion was 42%, it was not possible to analyze the product mixture.

Metallation with *sec*-butyllithium resulted in 96–97% de of the products. Through the metallation of **2** and subsequent quenching with methyl iodide, trimethylsilyl chloride, DMF, dicyclohexyl disulfide and ethyl chloroformate, we prepared derivatives with Me, TMS, CHO, SCy (Cy = cyclohexyl) and COOEt group as the substituents. The attempt to prepare the thiol derivative failed, as the product was extremely air-sensitive, and a complex mixture of products was formed.

Chiral 2-substituted ferrocenecarbaldehydes are useful intermediates for the production of chiral amino alcohols, which can be used as catalysts in R_2Zn addition to the carbonyl group of aldehydes. As there is just a few papers, describing the preparation of chiral 2-substituted ferrocenecarbaldehydes^{6,7,17,18}, we decided to examine the possibility of the transformation of 2-substituted amine derivatives **4a**–**4e**, **5a**, **5b** into the corresponding 2-substituted ferrocenecarbaldehydes **7a**–**7c** *via* oxidation.

The oxidation was performed with freshly prepared²⁰ active MnO_2 (Scheme 2), and the procedure was tested on simple amines **2** and **3**. The oxidation proceeded smoothly and, after 24 h, ferrocenecarbaldehyde was isolated in 78% yield. No attempts were made to recover the chiral auxilliaries. The results of the oxidations yielding chiral 2-substituted ferrocenecarbaldehydes (Table II) proved that this is a feasible route towards their preparation.

SCHEME 2

TABLE II

Entry	Substrate	Reaction time, h	Yields, %	Product
1	(<i>S</i>)- 2	18	77.9	6
2	(1 <i>R</i> ,2 <i>S</i>)- 3	24	91.4	6
3	$(S, R_{\rm p})$ -4a	40	59.2	$(R_{\rm p})$ -7a
4	$(S, S_{\rm p})$ -4b	40	54.0	$(S_{\rm p})$ -7 b
5	$(S, S_{\rm p})$ -4d	20	49.0	$(S_{\rm p})$ -7c
6	$(1R, 2S, R_{\rm p})$ -5 b	20	83.7	(R _p)- 7a

In conclusion, we have demonstrated that *n*-BuLi can be used as the metallation agent for the metallation of ferrocenylamines, and 2-substituted ferrocenylamine derivatives can be oxidised without loss of de into the corresponding chiral 2-substituted ferrocenecarbaldehydes by the Brocard's method³. This can be used as an alternative to Kagan's method^{16,17}.

EXPERIMENTAL

General Methods

Melting points were determined on a Kofler melting point apparatus and are uncorrected. ¹H (200 MHz) and ¹³C (75 MHz) NMR spectra were recorded at room temperature in $CDCl_2$ on a Varian Gemini 2000 spectrometer. Chemical shifts (δ -scale) are reported in ppm relative to tetramethylsilane as the internal standard, coupling constants (J) are given in Hz. IR spectra (wavenumbers in cm⁻¹) were recorded in CHCl₃ as a solvent on a Perkin Elmer 781 spectrometer. UV-VIS spectra were recorded in methanol on a Hewlett Packard 8452A spectrometer (λ , nm). Optical rotations were measured on a Perkin Elmer 241 polarimeter at 20 °C in ethanol; $[\alpha]_D$ values given in 10^{-1} deg cm² g⁻¹. The diastereometric excess of amines was determined using ¹H NMR on the basis of the integral ratio of the following chemical shifts: 4a and 5b δ of the CH₃ group, 4b δ of the SiMe₃ group, 4c and 5a δ of the CHO group, 4d δ of the CH₃ from the ethyl group and 4d δ of the OCH₃ group. All reactions requiring inert conditions were carried out under nitrogen. Diethyl ether was dried and distilled from sodium/benzophenone ketyl under nitrogen, acetonitrile was distilled from calcium hydride and toluene was distilled over sodium under nitrogen before use. Ferrocenylmethyl-N,N,N-trimethylammonium iodide was prepared by Kindsay's method²¹. Active MnO_2 was prepared prior to use according to the literature procedure²⁰. (1*R*,2*S*)-1-Methoxy-N-methyl-1-phenylpropan-2-amine was prepared according to ref.²² Chromatographic separations were performed either on silica gel (Merck 60) or alumina (Lachema, activity II-III). The chemicals were purchased from Aldrich or Merck.

Preparation of Derivatives 2 and 3. General Procedure^{12,13}

A mixture of (ferrocenylmethyltrimethyl)ammonium iodide (6.00 g, 15.6 mmol), an amine (16.2 mmol) and K_2CO_3 (4.34 g, 31.4 mmol) in acetonitrile (200 ml) was heated at reflux under nitrogen for 2 or 4 days. After filtration, the solvent was removed and the residue stirred with a mixture of Et_2O (200 ml), water (100 ml) and 85% H_3PO_4 (20 ml) for 5 min. The water layer was washed with diethyl ether, alkalized with solid Na_2CO_3 , and extracted with CH_2Cl_2 . The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and evaporated. The product was purified by chromatography on a short alumina column (hexane).

(S)-{[2-(Methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene (2). (S)-2 was obtained as an orange oil after 2 days (4.0 g; 82%), which is in accord with ref.¹³. ¹H NMR (CDCl₃): 1.54–1.73 m, 3 H (NCH₂CH₂CH₂); 1.81 m, 1 H (NCH₂CH₂); 2.25 ddd, 1 H, ²J = 9.4, ³J = 9.2, 7.1 (NCH₂); 2.62 m, 1 H (NCH); 2.93 ddd, 1 H, ²J = 9.4, ³J = 7.0, 1.8 (NCH₂); 3.23 dd, 1 H, ²J = 9.4, ³J = 6.4 (OCH₂); 3.34 s, 3 H (OCH₃); 3.35 dd, 1 H, ²J = 9.4, ³J = 4.9 (OCH₂); 3.41 d, 1 H, ²J = 13.1

 $(FcCH_2); \ 3.75 \ d, \ 1 \ H, \ ^2J = 13.1 \ (FcCH_2); \ 4.09 \ m, \ 2 \ H \ (H_{\beta}); \ 4.11 \ s, \ 5 \ H \ (C_5H_5); \ 4.16 \ m, \ 1 \ H \ (H_{\alpha 1}); \ 4.18 \ m, \ 1 \ H \ (H_{\alpha 2}). \ [\alpha]_D \ -58.7 \ (589), \ -61.3 \ (578), \ -69.5 \ (546) \ (c \ 0.62, \ EtOH).$

 $\{[N-((1R,2S)-Methoxy-1-methyl-2-phenethyl)-N-methylamino]methyl]$ ferrocene (3). (1R,2S)-3 was obtained as a yellow solid after 4 days (4.8 g; 81%). M.p. 44–46 °C, in accord with ref.¹¹. ¹H NMR (CDCl₃): 1.00 d, 3 H, ³J = 6.8 (CHCH₃); 2.25 s, 3 H (NCH₃); 2.82 dq, 1 H, ³J = 5.1, 6.8 (NCH); 3.25 s, 3 H (OCH₃); 3.41 d, 1 H, ²J = 12.9 (CH₂); 3.50 d, 1 H, ²J = 12.9 (CH₂); 4.07 m, 4 H (C₅H₄); 4.08 s, 5 H (C₅H₅); 4.29 d, 1 H, ³J = 5.1 (CHPh); 7.20–7.24 m, 3 H (Ph); 7.27–7.34 m, 2 H (Ph). [α]_D –13.5 (589), –13.7 (578), –14.4 (546) (*c* 0.54, EtOH).

Preparation of Compounds 4a-4e and 5a, 5b

Method A. To a solution of amine 2 or 3 (200 mg, 0.64 mmol) in anhydrous Et_2O (2 ml) was added dropwise 1.6 M solution of *n*-BuLi (0.45 ml, 0.71 mmol, 1.1 equiv.) under nitrogen at -78 °C. The reaction mixture was stirred at -30 °C for 2.5 h and then at 20 °C for 2 h. The mixture was cooled to -55 °C and an electrophile (0.71 mmol, 1.1 equiv.) was added dropwise. The mixture was allowed to warm to room temperature over 12 h. After the reaction was quenched with aqueous NaHCO₃, the organic layer was separated and the water layer extracted with Et_2O . The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by chromatography.

Method B. The same as method *A*; 1.3 \bowtie solution of *sec*-BuLi was used instead of *n*-BuLi, the mixture was stirred at -78 °C for 1.5 h and then at -30 °C for 2 h. Electrophiles were added at -78 °C.

(*S*,*R*_p)-1-{[2-(Methoxymethyl)pyrrolidin-1-yl]methyl}-2-methylferrocene (**4a**). (*S*,*R*_p)-**4a** was obtained as an orange oil after chromatography on silica with isohexane/Et₂O (3:1). Method *A* with MeI as the electrophile gave the product in 64% yield (>99% de); method *B* in 37% yield (97% de). ¹H NMR (CDCl₃): 1.50–1.72 m, 3 H (NCH₂CH₂CH₂); 1.83 m, 1 H (NCH₂CH₂); 2.00 s, 3 H (FcCH₃); 2.18 ddd, 1 H, ²*J* = 9.4, ³*J* = 9.3, 7.3 (NCH₂); 2.67 m, 1 H (NCH₁: 2.95 ddd, 1 H, ²*J* = 9.4, ³*J* = 7.8, 2.0 (NCH₂); 3.26 dd, 1 H, ²*J* = 9.4, ³*J* = 6.4 (OCH₂); 3.37 s, 3 H (OCH₃); 3.31 d, 1 H, ²*J* = 12.9 (FcCH₂); 3.40 dd, 1 H, ²*J* = 9.4, ³*J* = 4.5 (OCH₂); 3.93 d, 1 H, ²*J* = 12.9 (FcCH₂); 1.8.6 (FcCH₃); 2.2.9 (NCH₂CH₂), 2.8.8 (NCH₂CH₂CH₂CH₂), 52.5 (FcCH₂), 54.5 (NCH₂), 59.3 (OCH₃), 62.2 (NCH), 65.7 (CH_{α1}), 69.2 (C₅H₅), 69.78 (CH_{α2}), 69.83 (CH_β), 76.9 (C₁), 77.2 (CH₂O), 84.1 (C₁). IR (CHCl₃): 2810 (w), 2430 (w), 1470 (m), 1230 (s), 1120 (s, C–O–C), 1010 (w), 830 (m). UV VIS, λ (log ε): 206 (3.41). For C₁₈H₂₅FeNO (326.5) calculated: 66.07% C, 7.70% H, 4.28% N; found: 65.79% C, 7.80% H, 4.08% N. [α]_D –34.6 (c 0.615, EtOH).

(*S*,*S*_{*p*})-1-{[2-(*Methoxymethyl*)*pyrrolidin*-1-*yl*]*methyl*}-2-(*trimethylsilyl*)*ferrocene* (**4b**). (*S*,*S*_{*p*})-**4b** was obtained by method *A* with Me₃SiCl as the electrophile, chromatography on silica with isohexane/Et₂O (1:1) gave the product as an orange oil in accord with ref.¹³ (67%, 97% de). ¹H NMR (CDCl₃): 0.28 s, 9 H (Si(CH₃)₃); 1.46–1.64 m, 3 H (NCH₂CH₂CH₂); 1.86 m, 1 H (NCH₂CH₂); 2.01 m, 1 H (NCH₂); 2.57 m, 1 H (NCH); 2.71 m, 1 H (NCH₂); 3.07 d, 1 H, ²*J* = 12.6 (FcCH₂); 3.23 dd, 1 H, ²*J* = 9.0, ³*J* = 6.3 (OCH₂); 3.36 s, 3 H (OCH₃); 3.47 dd, 1 H, ²*J* = 9.0, ³*J* = 5.1 (OCH₂); 4.01 d, 1 H, ²*J* = 12.0 (FcCH₂); 4.03 m, 1 H (H_{α1}); 4.08 s, 5 H (C₅H₅); 4.21 m, 2 H (H_β); 4.27 m, 1 H (H_{α2}). IR (CHCl₃): 2800 (w), 2420 (w), 1260 (s), 1120 (m, C-O-C), 850 (s). UV VIS, λ (log ε): 208 (3.59). For C₂₀H₃₁FeNOSi (388.6) calculated:

62.32% C, 8.11% H, 3.63% N; found: 62.40% C, 8.29% H, 3.46% N. $\left[\alpha\right]_D$ –41.0 (c 0.485, EtOH).

(*S*,*S*_{*p*})-2-{[2-(Methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene-1-carbaldehyde (4c). (*S*,*S*_{*p*})-4c was obtained by method *A* with DMF as the electrophile, chromatography on alumina with isohexane/Et₂O (2:1) gave the product as a red oil (83%, 94% de). ¹H NMR (CDCl₃): 1.51–1.72 m, 3 H (NCH₂CH₂CH₂); 1.85 m, 1 H (NCH₂CH₂); 2.19 m, 1 H (NCH₂); 2.70 m, 1 H (NCH); 2.96 m, 1 H (NCH₂); 3.30 dd, 1 H, ²J = 9.0, ³J = 5.4 (OCH₂); 3.38 d, 1 H, ²J = 12.2 (FcCH₂); 3.39 s, 3 H (OCH₃); 3.46 dd, 1 H, ²J = 9.0, ³J = 5.7 (OCH₂); 4.22 s, 5 H (C₅H₅); 4.37 (d, 1 H, ²J = 12.2 (FcCH₂); 4.53 m, 1 H (H_{α1}); 4.58 m, 2 H (H_β); 4.79 m, 1 H (H_{α2}); 10.14 s, 1 H (CHO). ¹³C NMR (CDCl₃): 23.0 (NCH₂CH₂), 28.68 (NCH₂CH₂CH₂), 52.2 (FcCH₂), 54.6 (NCH₂), 59.3 (OCH₃), 62.4 (NCH), 69.9 (CH_{α1}), 70.3 (C₅H₅), 71.8 (CH_{α2}), 75.8 (CH_β), 77.0 (C₁), 77.2 (CH₂O), 77.9 (C₁), 193.9 (CHO). IR (CHCl₃): 2420 (w), 1680 (s, C=O), 1230 (s), 760 (m). UV VIS, λ (log ε): 202 (3.43). For C₁₈H₂₃FeNO₂ (340.4) calculated: 63.36% C, 6.79% H, 4.10% N; found: 63.28% C, 6.85% H, 4.01% N. [α]_D –229.7 (589), -262.1 (578), -267.2 (546) (c 0.195, EtOH).

(*S*,*S*_p)-1-(*Cyclohexylsulfanyl*)-2-{[2-(methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene (4d). (*S*,*S*_p)-4d was obtained by method *A* with biscyclohexyl disulfide, chromatography on alumina with isohexane/Et₂O (1:1) gave the product as yellow crystals (56%, 96% de). M.p. 40–45 °C. ¹H NMR (CDCl₃): 1.07–1.30 m, 4 H (**Cyclohexyl**); 1.55–1.80 m, 8 H (**Cyclohexyl** + NCH₂CH₂CH₂); 1.91 m, 2 H (NCH₂CH₂); 2.11 m, 1 H (NCH₂); 2.65 m, 1 H (NCH); 2.86 m, 1 H (NCH₂); 2.93 m, 1 H (SCH); 3.11 d, 1 H, ²J = 12.3 (FcCH₂); 3.18 dd, 1 H, ²J = 9.0, ³J = 7.8 (OCH₂); 3.39 s, 3 H (OCH₃); 3.59 dd, 1 H, ²J = 9.0, ³J = 4.2 (OCH₂); 4.09 s, 5 H (C₅H₅); 4.12 m, 1 H (H_β); 4.17 d, 1 H, ²J = 12.3 (FcCH₂); 4.27 m, 2 H (H_α). ¹³C NMR (CDCl₃): 23.1 (NCH₂CH₂), 26.1 (**Cyclohexyl**), 26.6 (NCH₂CH₂CH₂), 29.4 (**Cyclohexyl**), 33.1 (**Cyclohexyl**), 34.1 (**Cyclohexyl**), 47.8 (SCH), 53.1 (FcCH₂), 54.4 (NCH₂), 59.3 (OCH₃), 63.3 (NCH), 67.5 (CH_{α1}), 70.1 (C₅H₅), 71.4 (CH_{α2}), 75.7 (CH_β), 77.0 (C₁), 77.2 (CH₂O), 78.7 (C₁). IR (CHCl₃): 2800 (m, O-CH₃), 2430 (w), 1460 (s), 1230 (s), 1120 (s), 1010 (m), 830 (m). UV VIS, λ (log ε): 208 (3.64). For C₂₃H₃₃FeNOS (426.6) calculated: 64.63% C, 7.78% H, 3.28% N; found: 64.70% C, 7.84% H, 3.04% N. [α]_D +3.37 (c 0.51, EtOH).

Ethyl (*S*,*S*_p)-2-{[2-(methoxymethyl)pyrrolidin-1-yl]methyl]ferrocene-1-carboxylate (4e). (*S*,*S*_p)-4e was obtained with ethyl chloroformate after chromatography on alumina with isohexane/Et₂O (3:1) as a red oil. Method *A* gave the product in 74% yield (91% de); method *B* in 68% yield (72% de). ¹H NMR (CDCl₃): 1.37 t, 3 H, ³J = 7.2 (CH₂CH₃); 1.57–1.77 m, 3 H (NCH₂CH₂CH₂); 1.86 m, 1 H (NCH₂CH₂); 2.24 m, 1 H (NCH₂); 2.72 m, 1 H (NCH); 3.06 m, 1 H (NCH₂); 3.26 dd, 1 H, ²J = 9.0, ³J = 7.2 (OCH₂); 3.36 d, 1 H, ²J = 12.2 (FcCH₂); 3.37 s, 3 H (OCH₃); 3.53 dd, 1 H, ²J = 9.0, ³J = 4.5 (OCH₂); 4.14 s, 5 H (C₅H₅); 4.28 q, 2 H, ³J = 7.2 (CH₂CH₃); 4.32 m, 1 H (H_{α1}); 4.47 m, 1 H (H_β); 4.53 d, 1 H, ²J = 12.2 (FcCH₂); 4.79 m, 1 H (H_{α2}). ¹³C NMR (CDCl₃): 14.9 (CH₂CH₃), 22.9 (NCH₂CH₂), 28.8 (NCH₂CH₂CH₂), 52.1 (FcCH₂), 54.4 (NCH₂), 59.3 (OCH₃), 60.1 (CH₂CH₃), 62.2 (NCH), 70.0 (CH_{α1}), 70.5 (C₅H₅), 71.4 (CH_β), 74.7 (CH_{α2}), 76.2 (C₁), 77.2 (CH₂O), 77.7 (C₁), 172.0 (COO). IR (CHCl₃): 2420 (w), 1720 (m, C=O), 1230 (s), 780 (m). UV VIS, λ (log ε): 209 (3.40). For C₂₀H₂₇FeNO (352.5) calculated: 62.35% C, 7.06% H, 3.64% N; found: 62.14% C, 7.04% H, 3.24% N. [α]_D -92.5 (589), -99.3 (578), -123.5 (546) (c 0.575, EtOH).

 $(1R, 2S, S_p)$ -{*N*-[(2-Methoxy-1-methyl-2-phenethyl)-*N*-methylamino]methyl}ferrocene-1-carbaldehyde (**5a**). (1*R*,2*S*,*S*_p)-**5a** was obtained with DMF as the electrophile after chromatography on alumina with isohexane/Et₂O (3:1) as a red oil. Method *A* gave the product in 72% yield (11% de); method *B* in 70% yield (96% de). ¹H NMR (CDCl₃): 1.06 d, 3 H, ³J = 6.7 (CHCH₃); 2.18 s, 3 H (NCH₃); 2.82 dq, 1 H, ${}^{3}J$ = 5.6, 6.7 (NCH); 3.23 s, 3 H (OCH₃); 3.48 d, 1 H, ${}^{2}J$ = 12.9 (CH₂); 3.84 d, 1 H, ${}^{2}J$ = 12.9 (CH₂); 3.84 d, 1 H, ${}^{2}J$ = 12.9 (CH₂); 4.18 s + d, 6 H (CHPh + C₅H₅); 4.42 m, 1 H (H_{α1}); 4.47 m, 1 H (H_β); 4.73 m, 1 H (H_{α2}); 7.16–7.35 m, 5 H (Ph); 9.83 s, 1 H (CHO). 13 C NMR (CDCl₃): 8.9 (CHCH₃), 36.9 (NCH₃), 52.5 (CH₂), 56.9 (OCH₃), 63.8 (NCH), 69.1 (CH_{α1}), 70.3 (C₅H₅), 71.6 (CH_β), 75.7 (CH_{α2}), 77.2 (C₁), 77.8 (C₁), 86.0 (CHPh), 127.2 + 127.4 + 128.3 (Ph), 141.5 (C₅H₅), 193.7 (CHO). IR (CHCl₃): 2420 (m), 1690 (s, C=O), 1230 (s), 820 (s). UV VIS, λ (log ϵ): 204 (3.51). For C₂₃H₂₇FeNO₂ (404.5) calculated: 68.16% C, 6.71% H, 3.46% N; found: 68.05% C, 6.81% H, 3.07% N. [α]_D –233 (589), –261 (578), –353 (546) (c 0.165, EtOH).

(1*R*,2*S*,*R*_p)-{*N*-[(2-Methoxy-1-methyl-2-phenethyl)-*N*-methylamino]methyl}-1-methylferrocene (**5b**). (1*R*,2*S*,*R*_p)-**5b** was obtained with MeI as electrophile as an orange oil by method *B*, chromatography on alumina with isohexane/Et₂O (1:1) (92%, 97% de). ¹H NMR (CDCl₃): 1.05 d, 3 H, ³*J* = 6.6 (CHCH₃); 1.77 s, 3 H (FcCH₃); 2.15 s, 3 H (NCH₃); 2.82 dq, 1 H, ³*J* = 6.0, 6.6 (NCH); 3.23 s, 3 H (OCH₃); 3.34 d, 1 H, ²*J* = 12.6 (CH₂); 3.49 d, 1 H, ²*J* = 12.6 (CH₂); 3.90 m, 1 H (H_{α1}); 3.94 m, 1 H (H_β); 3.97 s + d, 6 H (CHPh + C₅H₅); 4.19 m, 1 H (H_{α2}); 7.20–7.25 m, 3 H (Ph); 7.28–7.33 m, 2 H (Ph). ¹³C NMR (CDCl₃): 8.7 (CHCH₃), 13.4 (CH₃Fc), 37.1 (NCH₃), 52.8 (CH₂), 56.9 (OCH₃), 63.4 (NCH), 68.7 (CH_{α1}), 69.2 (C₅H₅), 69.6 (CH_β), 70.0 (CH_{α2}), 77.2 (C₁), 77.8 (C₁), 84.3 (CHPh), 127.2 + 127.3 + 128.2 (Ph), 141.7 (C₁). IR (CHCl₃): 2420 (w), 1470 (w), 1230 (s), 1100 (m, C–O–C), 780 (s). UV VIS, λ (log ε): 206 (3.67). For C₂₃H₂₉FeNO (390.5) calculated: 70.59% C, 7.47% H, 3.58% N; found: 70.80% C, 7.91% H, 3.20% N. [α]_D –25.1 (589), –27.1 (578), –36.7 (546) (c 0.54, EtOH).

Oxidation of Amines. General Method³

To a solution of ferrocenylmethylamine (32 mmol) in anhydrous toluene (5 ml) was added active MnO_2 (3.2 mmol, 10 equiv.). The mixture was heated at reflux under nitrogen for 18–40 h and the progress of the reaction was monitored by TLC. After the reaction mixture was cooled down to room temperature, the unreacted MnO_2 was filtered off, the solvent removed by evaporation and the residue purified by chromatography on alumina using isohexane/diethyl ether (4:1–2:1) as the eluent.

Ferrocenecarbaldehyde (6). Compound 6 was obtained in 18 h from (*S*)-2 as red crystals (78%) and in 24 h from (1*R*,2*S*)-3 (91%). M.p. 121–123 °C; ref.²⁵ gives 124.5 °C. ¹H NMR (CDCl₃): 4.28 s, 5 H (C₅H₅); 4.61 m, 2 H (H₆); 4.80 m, 2 H (H_{α}); 9.96 s, 1 H (CHO).

(R_p)-2-Methylferrocene-1-carbaldehyde **7a**. (R_p)-**7a** was obtained in 40 h from **4a** as red crystals (59%) after chromatography on silica with isohexane/Et₂O (3:1) and in 20 h from **5b** (84%). M.p. 40–42 °C, in accord with ref.¹⁷. ¹H NMR (CDCl₃): 2.26 s, 3 H (CH₃); 4.20 s, 5 H (C₅H₅); 4.46 m, 1 H (H_{α2}); 4.50 m, 1 H (H_β); 4.70 m, 1 H (H_{α1}); 10.10 s, 1 H (CHO). ¹³C NMR (CDCl₃): 29.7 (CH₃), 69.5 (C₅H₃), 70.2 (C₅H₅), 71.0 (C₅H₃), 75.0 (C₅H₃), 77.0 (C₁), 87.1 (C₁), 193.9 (CHO). IR (CHCl₃): 2420 (w), 1680 (s, C=O), 1440 (m), 1220 (m), 1040 (w), 840 (m), 750 (s). UV VIS, λ (log ε): 202 (3.24). For C₁₂H₁₂FeO (227.3) calculated: 63.20% C, 5.30% H; found: 63.17% C, 5.42% H. [α]_D 146 (589), 169 (578), 160 (546) (*c* 0.10, EtOH); ref.²⁰ gives [α]_D +147.8 ± 8 (*c* 0.76, EtOH).

 (S_p) -2-(*Trimetylsilyl*)*ferrocene-1-carbaldehyde* **7b**. (S_p) -**7b** was obtained in 40 h from (S,S_p) -**4b**. Chromatography on silica with isohexane/Et₂O (6:1) gave the product as red crystals (54%). M.p. 60–65 °C, in accord with ref.¹⁷. ¹H NMR (CDCl₃): 0.32 s, 9 H (Si(CH₃)₃); 4.26 s, 5 H (C₅H₅); 4.53 m, 1 H (H_{α 1}); 4.72 m, 1 H (H_{β}); 4.99 m, 1 H (H_{α 2}); 10.03 s, 1 H (CHO). ¹³C NMR (CDCl₃): 0.003 (Si(CH₃)₃), 69.2 (C₅H₅), 73.2 (C₅H₃), 74.3 (C₅H₃), 74.6 (C₁), 79.3

 (C_5H_3) , 77.0 (C_i), 193.9 (CHO). IR (CHCl₃): 2420 (w), 1680 (s, C=O), 1440 (m), 1260 (s), 1050 (w), 840 (s, C-Si). UV VIS, λ (log ε): 204 (3.38). For $C_{14}H_{18}$ FeOSi (289.4) calculated: 58.75% C, 6.34% H; found: 58.45% C, 6.20% H. $[\alpha]_D$ –133.3 (*c* 0.09, EtOH); ref.²¹ gives $[\alpha]_D$ +194 (*c* 0.28, EtOH); (R_p).

(*S_p*)-2-(*Cyclohexylsulfanyl*)*ferrocene-1-carbaldehyde* **7c**. (*S_p*)-**7c** was obtained in 20 h from (*S*,*S_p*)-**4d**. Chromatography on silica with isohexane/Et₂O (4:1) gave the product as red crystals (49%). M.p. 40–45 °C. ¹H NMR (CDCl₃): 1.22 m, 2 H (CH₂); 1.59 m, 4 H (CH₂); 1.71 m, 2 H (CH₂); 1.85 m, 2 H (CH₂); 2.59 m, 1 H (CH); 4.28 s, 5 H (C₅H₅); 4.66 t, 1 H, ³*J* = 2.5 (H_β); 4.69 dd, 1 H, ³*J* = 2.5, 1.6 (H_{α1}); 4.96 m, 1 H, ³*J* = 2.5, 1.6 (H_{α2}); 10.26 s, 1 H (CHO). ¹³C NMR (CDCl₃): 25.7, 26.1, 33.5 (CH₂), 49.2 (CH), 68.9 (C₅H₃), 71.3 (C₅H₅), 73.1 (C₅H₃), 77.0 (**Cyclohexyl**), 80.7 (C₅H₃), 82.0 (**Cyclohexyl**), 194.8 (CHO). IR (CHCl₃): 2660 (m), 2400 (w), 1670 (s, C=O), 1420 (m), 1220 (s), 1000 (w), 780 (s). UV VIS, λ (log ε): 202 (3.50). For C₁₇H₂₀FeOS (327.5) calculated: 62.20% C, 6.14% H; found: 61.59% C, 5.77% H. [α]_D 769.7 (589), 887.9 (578), 1193.9 (546) (*c* 0.165, EtOH).

REFERENCES

- 1. Delevaux-Nicot B., Guari Y., Mathieu R.: J. Organomet. Chem. 1995, 489, C87.
- 2. Picart-Goetheluck S., Delacroix O., Maciejewski L., Brocard J.: Synthesis 2000, 1421.
- 3. Malfait S., Pelinski L., Maciejewski L., Brocard J.: Synlett 1997, 830.
- 4. Marquarding D., Klusáček H., Gohel G., Hoffmann P., Ugi I.: *J. Am. Chem. Soc.* **1970**, *92*, 5389.
- 5. Rebière F., Riant O., Ricard L., Kagan H. B.: Angew. Chem. 1993, 105, 644.
- Lagneau N. M., Chen Y., Robben P. M., Sin H. S., Takasu K., Chen J. S., Robinson P. D., Hua D. H.: *Tetrahedron* **1998**, *54*, 7301.
- 7. Riant O., Argouarch G., Guillaneux D., Samuel O., Kagan H. B.: *J. Org. Chem.* **1998**, *63*, 3511.
- 8. Richards C. J., Damalidis T., Hibbs D. E., Hursthouse M. B.: Synlett 1995, 74.
- 9. Nishibayashi Y., Uemura S.: Synlett 1995, 79.
- 10. Sammakia T., Latham H. A., Schaad D. R.: J. Org. Chem. 1995, 60, 10.
- 11. Kitzler R., Xiao L., Weissensteiner W.: Tetrahedron: Asymmetry 2000, 11, 3459.
- 12. Xiao L., Kitzler R., Weissensteiner W.: J. Org. Chem. 2001, 66, 8912.
- 13. Ganter C., Wagner T.: Chem. Ber. 1995, 128, 1157.
- 14. Gotov B., Toma Š., Solčaniová E., Cvengroš J.: Tetrahedron 2000, 56, 671.
- 15. Šebesta R., Sališová M.: Collect. Czech. Chem. Commun. 2002, 67, 1700.
- Riant O., Argouarch G., Guillaneux D., Samuel O., Kagan H. B.: J. Org. Chem. 1998, 63, 3511.
- 17. Riant O., Samuel O., Kagan H. B.: J. Am. Chem. Soc. 1993, 115, 5835.
- 18. Enders D., Peters R., Lochtman R., Rusink J.: Synlett 1997, 1462.
- 19. Enders D., Peters R., Lochtman R., Rusink J.: Eur. J. Org. Chem. 2000, 2839.
- 20. Vogel's Textbook of Practical Organic Chemistry, p. 302. Longman, London 1978.
- 21. Kindsay J. K., Hauser C. R.: J. Org. Chem. 1957, 22, 355.
- 22. Näslund J., Welch C. J.: Tetrahedron: Asymmetry 1991, 2, 1123.
- 23. Schlőgl K., Fried M., Falk H.: Monatsh. Chem. 1964, 95, 576.
- 24. Riant O., Samuel O., Flessner T., Taudien S., Kagan H. B.: J. Org. Chem. 1997, 62, 6733.
- 25. Broadhead G. D., Osgerby J. M., Pauson P. L.: J. Chem. Soc. 1958, 650.